If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-25x-129=3
We move all terms to the left:
x^2-25x-129-(3)=0
We add all the numbers together, and all the variables
x^2-25x-132=0
a = 1; b = -25; c = -132;
Δ = b2-4ac
Δ = -252-4·1·(-132)
Δ = 1153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{1153}}{2*1}=\frac{25-\sqrt{1153}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{1153}}{2*1}=\frac{25+\sqrt{1153}}{2} $
| y=8.55+20 | | 20x-42=6x | | 3w=6w-45 | | h^2-18h=-20 | | 6^-3n=6^3n-1 | | -3.4x-0.3=1.4 | | .2x+4.1=6.3 | | m^2+15m-6=18 | | 2-a=20 | | 3^-3p=1 | | 8=2h+2 | | 1/2x+7=3x-18 | | b^2-27b=60 | | 180-x=1/2((2x+4)+28) | | 2+4x=8.5 | | -f+2+f=8-3f | | 3(3x-4)=+15+45 | | -5-6a=59 | | 3.5z+2.7z=-5 | | g^2-6g-16=0 | | 3t+50=7t+10 | | y^2-21+110=0 | | 20=3t+2 | | 7y+16-9y=7.5 | | 15k^2-53k+31=-13 | | 5+2x10= | | 74+2x=90 | | 18y^2-18y-5=51 | | x-16/3=5 | | 4(3x+4)-2x=8x-20 | | 8y^2-73y=90 | | -4*(8.333333333+2y)-7*y+3*(8.333333333+2*y-2*y+11)=27 |